GARRAS AND SITHNEY PRIMARY SCHOOLS

Calculation Policy

Year		Mental Calculation	Written Calculation	Default for all Children
	O	Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2-digit numbers and beginning to read and say numbers above 100. A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Y 2 knowing the pairs of numbers which make all the numbers up to 10 at least. They will also have experienced and been taught pairs to 20 . Their knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2-digit number. Another important conceptual tool is their ability to add/subtract 1 or 10 , and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2-digit number. The most important application of this knowledge is their ability to add or subtract any pair of 2-digit numbers by counting on or back in tens and ones. Children may extend this to adding by partitioning numbers into tens and ones. Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will have related this skill to repeated addition. They will have met and begun to learn the associated $2 \mathrm{x}, 3 \mathrm{x}, 5 \mathrm{x}$ and $10 x$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. They will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.		
Y1	员	Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count on in ones from a given 2-digit number Add two single-digit numbers Add three single-digit numbers spotting doubles or pairs to 10 Count on in tens from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add single-digit numbers to two-digit numbers, e.g. use $4+3$ to work out $24+3,34+3 \ldots$ Add by putting the larger number first		Pairs with a total of 10 Counting in ones Counting in tens Count on 1 from any given 2-digit number

| | Number bonds ('story of' 5, 6, 7, 8, 9
 and 10)
 Count back in ones from a given 2-digit
 number
 Subtract one single-digit number from
 another
 Count back in tens from any given 2-
 digit number
 Subtract 10 from any given 2-digit
 number
 Use number facts to subtract single-
 digit numbers from two-digit numbers,
 e.g. use 7 - 2 to work out 27 - 2, 37 -
 $2 \ldots$ | Pairs with a total of 10
 Counting back in ones from 20 to 0
 Counting back in tens from 100 to 0
 Count back 1 from any given 2-digit number |
| :--- | :--- | :--- | :--- | :--- |

		Number bonds - knowing all the pairs of numbers which make all the numbers to 12 Count back in ones and tens from any given 2-digit number Subtract a single-digit number from any 2 -digit number using number facts, including bridging multiples of 10 , e.g. 56-3, 53-5. Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in tens and ones or by counting up.		Know pairs of numbers which make each total up to 10 Subtract a single-digit number from a 2-digit number by counting back in ones Subtract 10 and small multiples of 10 from a 2-digit number by counting back in tens
		Count in 2 s , 5 s and 10 s Begin to count in 3 s . Begin to understand that multiplication is repeated addition and to use arrays (E.g. 3×4 is three rows of 4 dots) Begin to learn the $2 x, 3 x, 5 x$ and 10x tables, seeing these as 'lots of', e.g. 5 lots of 2,6 lots of 2,7 lots of 2 , etc. Double numbers up to 20 Begin to double multiples of 5 to 100 Begin to double two-digit numbers less than 50 with 1 s digits of $1,2,34$ or 5		Count in 2 s , 5 s and 10 s Begin to use and understand simple arrays, e.g. 2 x 4 is two lots of four buns. Double numbers up to 10 Double multiples of 10 to 50
		Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to count in 3 s Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s count. (E.g. 8 is the fourth number when I count in twos.) Relate division to grouping. (E.g. how many groups of five in fifteen?) Halve numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)		Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Say how many rows in a given array. (E.g. how many rows of 5 in an array of 3×5) Halve numbers to 12 Find $1 / 2$ of amounts

		In the lower juniors, children build on the concrete and conceptual understandings they have gained in the Infants to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers. In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies to enable them to discard the 'counting in ones' or fingers-based methods of the infants. In particular, they will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced. This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the 12×12 table. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing by 5 or multiplying by 20 . Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place decimals, multiplying and dividing whole numbers by 10 and 100 .		
Y 3	$\begin{aligned} & B \\ & \text { Q } \\ & \text { 을 } \\ & \text { 0 } \end{aligned}$	Know pairs with each total to 20 Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10 s and 1 s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place value additions without a struggle. (E.g. $300+8+50=358$) Use place value and number facts to add a 1-digit or 2-digit number to a 3digit number. (E.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$ and $676+8$ is 684 since $8=4+4$ and $76+4+4=84$) Add pairs of 'friendly' 3-digit numbers, e.g. $320+450$ Begin to add amounts of money using partitioning.	Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with three digits. Begin to add like fractions. (E.g. $3 / 8+1 / 8+1 / 8$) Recognise fractions that add to 1. (E.g. $1 / 4+3 / 4$ or $3 / 5+2 / 5$)	Know pairs of numbers which make each total up to 10, and which total 20 Add two 2-digit numbers by counting on in tens and ones (E.g. $56+35$ is $56+30$ and then add the 5) Understand simple place value additions: $200+40$ $+5=245$ Use place value to add multiples of 10 or 100

Know pairs with each total to 20 Subtract any two 2-digit numbers Perform place value subtractions without a struggle. (E.g. 536-30= 506, etc.)
Subtract 2-digit numbers from numbers >100 by counting up. (E.g. $143-76$ is done by starting at 76, add 4 (80) then add 20 (100) then add 43 making the difference a total of 67)
Subtract multiples and near multiples of 10 and 100
Subtract, when appropriate, by counting back or taking away, using place value and number facts. Find change from $£ 1, £ 5$ and $£ 10$. Know by heart all the multiplication facts in the $2 x, 3 x, 4 x, 5 x, 8 x$ and $10 x$ tables
Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative
Use place value and number facts in mental multiplication. (E.g. 30×5 is 15 x 10)
Partition teen numbers to multiply by a single-digit number. (E.g. 3×14 as $3 \times$ 10 and 3×4)
Double numbers up to 50
Know by heart all the division facts derived from the $2 x, 3 x, 4 x, 5 x, 8 x$ and $10 x$ tables.

Divide whole numbers by 10 or 100 to give whole number answers

Recognise that division is not commutative.
Use place value and number facts in mental division. (E.g. $84 \div 4$ is half of 42)
Divide larger numbers mentally by subtracting the tenth multiple, including those with remainders. (E.g. $57 \div 3$ is $10+$ 9 as $10 \times 3=30$ and $9 \times 3=27$)

Halve even numbers to 100, halve odd numbers to 20

Use counting up as an informal written strategy for subtracting pairs of three-digit numbers, e.g.
$423-357$ is

Begin to subtract like fractions. (E.g. $7 / 8-3 / 8$)

Use partitioning (grid multiplication) to multiply 2digit and 3-digit numbers by 'friendly' single digit numbers

Know pairs of numbers which make each total up to 10 , and which total 20
Count up to subtract 2-digit numbers: $72-47$ is

Subtract multiples of 5 from 100 by counting up

| +5 | +60 | $=65$ |
| :--- | :--- | :--- | :--- |
| 35 | 40 | 100 |

Subtract multiples of 10 and 100

Know by heart the $2 x, 3 x, 5 x$ and $10 x$ tables
Double given tables facts to get others
Double numbers up to 25 and multiples of 5 to 50

Know by heart the division facts derived from the $2 x, 3 x, 5 x$ and $10 x$ tables
Halve even numbers up to 50 and multiples of ten to 100
Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.

Y4	$\begin{aligned} & \text { D } \\ & \text { 贝 } \\ & \text { Q } \\ & \text { it } \\ & 0 \end{aligned}$	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next hundred, pound and whole number. (E.g. $234+66=300$, $3.4+0.6=4$) Perform place value additions without a struggle. (E.g. $300+8+50+4000=$ 4358) Add multiples and near multiples of 10, 100 and 1000. Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so total is 4160)	Column addition for 3-digit and 4-digit numbers Add like fractions, e.g. $3 / 5+4 / 5=7 / 5=12 / 5$. Be confident with fractions that add to 1 and fraction complements to 1 . (E.g. $2 / 3+?=1$)	Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add friendly larger numbers using knowledge of place value and number facts Use expanded column addition to add 3-digit numbers
	u0!poe.fqns	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place value subtractions without a struggle. (E.g. $4736-706=$ 4030, etc.) Subtract multiples and near multiples of 10,100 and 100 Subtract by counting up. (E.g. 503 368 is done by adding: $368+2+30$ $+100+3$ so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts. Subtract $£ 1,10$ p, 1 p from amounts of money Find change from $£ 10, £ 20$ and $£ 50$.	Use expanded column subtraction for 3-digit and 4-digit numbers Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 E.g. $2002-1865$ is Subtract like fractions, e.g. $1 / 4+1 / 8=3 / 8$ Use fractions that add to 1 to find fraction complements to 1 , e.g. $1-2 / 3=1 / 3$	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100. (E.g. $512-287$ is done by

		Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or $40,000 \div 8$. In addition, it is in Y 5 and Y 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted.		
Y5		Know numbers bonds to 1 and to the next whole number Add to the next 10 from a decimal number, e.g. $13 \cdot 6+6 \cdot 4=20$ Add numbers with two significant digits only, using mental strategies. (E.g. 3.4 +4.8 or $23,000+47,000)$ Add one or two-digit multiples of 10, 100, 1000, 10,000 and 100,000. (E.g. $8000+7000$ or $600,000+700,000)$ Add near multiples of $10,100,1000$, 10,000 and 100,000 to other numbers. (E.g. 82,472 $+30,004$) Add decimal numbers which are near multiples of 1 or 10, including money. (E.g. $6 \cdot 34+1 \cdot 99$ or $£ 34 \cdot 59+£ 19 \cdot 95$) Use place value and number facts to add two or more friendly numbers including money and decimals. (E.g. 3 $+8+6+4+7,0.6+0.7+0.4$, or $2,056+44)$	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of two-place decimal numbers including amounts of money. Begin to add related fractions using equivalences. (E.g. $1 / 2+1 / 6=3 / 6+1 / 6$) Choose the most efficient method in any given situation	Add numbers with only 2 -digits which are not zeros, e.g. $3.4+5.8$ Derive swiftly and without any difficulty number bonds to 100 Add friendly large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4and 5 -digit numbers
		Subtract numbers with two significant digits only, using mental strategies. (E.g. 6.2-4.5 or 72,000-47,000) Subtract one or two-digit multiples of 100, 1000, 10,000 and 100,000. (E.g. $8000-3000$ or $600,000-200,000$) Subtract one or two digit near multiples of 100, 1000, 10,000 and 100,000 from other numbers. (E.g. 82,472-30,004) Subtract decimal numbers which are near multiples of 1 or 10, including money. (E.g. 6.34-1.99 or $£ 34.59-$	Use compact or expanded column subtraction to subtract numbers with up to 5 digits. Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 . Use complementary addition for subtractions of decimals with up to two places incl. amounts of money Begin to subtract related fractions using equivalences. (E.g. $1 / 2-1 / 6=2 / 6$) Choose the most efficient method in any given situation	Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000 . (E.g. $3000-2387$ is done by

£19.95)
Use counting up subtraction, with knowledge of number bonds to 10/100 or $£ 1$, as a strategy to perform mental subtraction. (E.g. $£ 10-£ 3.45$ or 1000 - 782]

Recognise fraction complements to 1 and to the next whole number. (E.g. 1 $2 / 5+3 / 5=2) 4-5$

Know by heart all the multiplication facts up to 12×12.
Multiply whole numbers and one-and two-place decimals by $10,100,1000$, 10,000
Use knowledge of factors and multiples in multiplication. (E.g. 43×6 is double 43×3, and 28×50 is $1 / 2$ of $28 \times 100=$ 1400)

Use knowledge of place value and rounding in mental multiplication. (E.g. 67×199 as $67 \times 200-67$)
Use doubling and halving as a strategy
in mental multiplication. (E.g. $58 \times 5=$ half of 58×10, and 34×4 is 34 doubled twice)
Partition 2-digit numbers, including decimals, to multiply by a single-digit number mentally. (E.g. 6×27 as $6 x$ 20 (120) plus 6×7 (42) making 162 or 6.3×7 as 6×7 plus 0.3×7) Double amounts of money by partitioning. (E.g. $£ 37.45$ doubled $=$ £37 doubled ($£ 74$) plus 45p doubled (90p) £74.90)

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4 digit number by a number between 11 and 20 Choose the most efficient method in any given situation
Find simple percentages of amounts 9e.g. 10\%, $5 \%, 20 \%$, 155 and 50\%)
Begin to multiply fractions and mixed numbers by whole numbers ≤ 10, e.g. $4 \times 2 / 3=8 / 3=2^{2} / 3$

Know multiplication tables to 11×11
Multiply whole numbers and one-place decimals by 10,100 and 1000
Use knowledge of factors as aids to mental multiplication. (E.g. $13 \times 6=$ double 13×3 and $23 \times$ 5 is $1 / 2$ of 23×10)
Use grid method to multiply numbers with up to 4digits by one-digit numbers
use grid method to multiply 2-digit by 2-digit numbers.

	$\begin{aligned} & 0 \\ & \underline{\vdots} \\ & \bar{n} \\ & \overline{0} \\ & \underline{j} \end{aligned}$	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by 10,100 , 1000, 10,000 to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies. (E.g. $34 \div 5$ is (34 $\div 10$) x 2) Use knowledge of multiples and factors, also tests for divisibility ,in mental division. (E.g. $246 \div 6$ is $123 \div$ 3 and we know that 525 divides by 25 and by 3) Halve amounts of money by partitioning. (E.g. Half of $£ 75.40=$ half of $£ 75$ (37.50) plus half of 40 p (20p) which is $£ 37.70$) Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $100^{\text {th }}$ multiple as appropriate. (E.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36 ; 312 \div 3$ is $100+4$ as $100 \times 3=300$ and 4×3 = 12) Reduce fractions to their simplest form.	Use short division to divide a number with up to 4 digits by a number ≤ 12. Give remainders as whole numbers or as fractions. Find non-unit fractions of large amounts. Turn improper fractions into mixed numbers and vice versa. Choose the most efficient method in any given situation	Know by heart division facts up to $121 \div 11$ Divide whole numbers by 10,100 or 1000 to give answers with up to one decimal place. Use doubling and halving as mental division strategies Use efficient chunking to divide numbers ≤ 1000 by 1-digit numbers. Find unit fractions of 2 and 3-diigt numbers
Y6	$\begin{aligned} & D \\ & \text { 응 } \\ & \text { 을 } \\ & \text { 을 } \end{aligned}$	Know by heart number bonds to 100 and use these to derive related facts. (E.g. $3.46+0.54=4$) Derive quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation doable 'in our heads'. (E.g. 34,000 + 8000.) Add multiples of powers of ten and near multiples of the same. (E.g. 6345 + 199.) Add negative numbers in a context such as temperature where the numbers make sense. Add two 1-place decimal numbers or two 2-place decimal numbers less than	Use column addition to add numbers with up to 5 digits. Use column addition to add decimal numbers with up to 3-digits Add mixed numbers and fractions with different denominators.	Derive swiftly and without difficulty, number bonds to 100 Use place value and number facts to add friendly large or decimal numbers, e.g. $3.4+6.6$ or 26,000 $+5,400$ Use column addition to add numbers with up to 4digits. Use column addition to add pairs of two-place decimal numbers.

	$1 \text { (E.g. } 4.5+6.3 \text { or } 0.74+0.33 \text {) }$ Add positive numbers to negative numbers, e.g. calculate a rise in temperature, or continue a sequence beginning with a negative number		
	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition. (E.g. $1000-654$ as $46+300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of one-place or two-place decimal numbers using complementary addition and including money. (E.g. $10-3.65$ as $0.35+6, £ 50-£ 34.29$ as $71 p+$ £15) Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to two places. (E.g. 467,900-3,005 or 4.63-1.02) Subtract multiples of powers of ten and near multiples of the same. Subtract negative numbers in a context such as temperature where the numbers make sense.	Use column subtraction to subtract numbers with up to 6 digits. Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10,000 . Use complementary addition for subtractions of decimal numbers with up to three places including money. Subtract mixed numbers and fractions with different denominators.	Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition. (E.g. 1000-654 as $46+$ 300 in our heads.) Use complementary addition for subtraction of integers up to 10,000 . E.g. $2504-1878$ as Use complementary addition for subtractions of one-place decimal numbers and amounts of money. (E.g. $£ 7.30-£ 3.55$ as
	Know by heart all the multiplication facts up to 12×12. Multiply whole numbers and decimals with up to three places by 10,100 or 1000 , e.g. $234 \times 1000=234,000$ and $0.23 \times 1000=230$) Identify common factors, common multiples and prime numbers and use factors in mental multiplication. (E.g. 326×6 is 652×3 which is 1956) Use place value and number facts in mental multiplication. (E.g. 40,000 x 6 $=24,000$ and $0.03 \times 6=0.18$) Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply a 2-digit by a number with up to 4 digits Use short multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money. Multiply fractions and mixed numbers by whole numbers. Multiply fractions by proper fractions. Use percentages for comparison and calculate simple percentages.	Know by heart all the multiplication facts up to 12 x 12. Multiply whole numbers and one-and two-place decimals by 10,100 and 1000. Use an efficient written method to multiply a onedigit or a teens number by a number with up to 4digits by partitioning (grid method). Multiply a one-place decimal number up to 10 by a number ≤ 100 using grid method.

	(E.g. 28×25 is $1 / 4$ of $28 \times 100=700$) Use rounding in mental multiplication. (34×19 as $(20 \times 34)-34)$ Multiply one and two-place decimals by numbers up to and including 10 using place value and partitioning. (E.g. 3.6 x 4 is $12+2.4$ or 2.53×3 is $6+1.5+$ 0.09) Double decimal numbers with up to 2 places using partitioning e.g. $36 \cdot 73$ doubled is double 36 (72) plus double 0.73(1.46)		
0 \vdots \vdots \vdots 0 0	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by powers of 10 to give whole number answers or answers with up to three decimal places. Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div$ 6 is $219 \div 3$ which is 73) Use tests for divisibility to aid mental calculation. Use doubling and halving as mental division strategies, e.g. to divide by 2, $4,8,5,20$ and 25. (E.g. $628 \div 8$ is halved three times: $314,157,78.5$) Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6=0.4$ or 0.65 $\div 5=0.13, £ 6.33 \div 3=£ 2.11$) Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of 36 (18) plus half of $0.86(0.43)$ Know and use equivalence between simple fractions, decimals and percentages, including in different contexts. Recognise a given ratio and reduce a given ratio to its lowest terms.	Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number Use long division to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers. Give remainders as whole numbers or as fractions or as decimals Divide a one-place or a two-place decimal number by a number ≤ 12 using multiples of the divisors. Divide proper fractions by whole numbers.	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by $10,100,1000$ to give whole number answers or answers with up to two decimal places. Use efficient chunking involving subtracting powers of 10 times the divisor to divide any number of up to 1000 by a number ≤ 12. (E.g. $836 \div 11$ as $836-770(70 \times 11)$ leaving 66 which is 6×11. So that we have $70+6=76$ as the answer). Divide a one-place decimal by a number ≤ 10 using place value and knowledge of division facts.

